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Abstract

Many signals, such as spike trains recorded in multi-channel electrophysiological
recordings, may be represented as the sparse sum of translated and scaled copies
of waveforms whose timing and amplitudes are of interest. From the aggregate
signal, one may seek to estimate the identities, amplitudes, and translations of the
waveforms that compose the signal. Here we present a fast method for recover-
ing these identities, amplitudes, and translations. The method involves greedily
selecting component waveforms and then refining estimates of their amplitudes
and translations, moving iteratively between these steps in a process analogous
to the well-known Orthogonal Matching Pursuit (OMP) algorithm [11]. Our ap-
proach for modeling translations borrows from Continuous Basis Pursuit (CBP)
[4], which we extend in several ways: by selecting a subspace that optimally cap-
tures translated copies of the waveforms, replacing the convex optimization prob-
lem with a greedy approach, and moving to the Fourier domain to more precisely
estimate time shifts. We test the resulting method, which we call Continuous Or-
thogonal Matching Pursuit (COMP), on simulated and neural data, where it shows
gains over CBP in both speed and accuracy.

1 Introduction

It is often the case that an observed signal is a linear combination of some other target signals that
one wishes to resolve from each other and from background noise. For example, the voltage trace
from an electrode (or array of electrodes) used to measure neural activity in vivo may be recording
from a population of neurons, each of which produces many instances of its own stereotyped action
potential waveform. One would like to decompose an analog voltage trace into a list of the timings
and amplitudes of action potentials (spikes) for each neuron.

Motivated in part by the spike-sorting problem, we consider the case where we are given a signal
that is the sum of known waveforms whose timing and amplitude we seek to recover. Specifically,
we suppose our signal can be modeled as:

y(t) =

Nf∑
n=1

J∑
j=1

an,jfn(t− τn,j), (1)
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where the waveforms fn are known, and we seek to estimate positive amplitudes an,j and event
times τn,j . Signals of this form have been studied extensively [12, 9, 4, 3].

This a difficult problem in part because of the nonlinear dependence of y on τ . Moreover, in most
applications we do not have access to y(t) for arbitrary t, but rather have a vector of sampled (noisy)
measurements on a grid of discrete time points. One way to simplify the problem is to discretize τ ,
considering only a finite set of possible time shift τn,j ∈ {∆, 2∆..., N∆∆} and approximating the
signal as

y ≈
Nf∑
n=1

J∑
j=1

an,jfn(t− in,j∆), in,j ∈ 1, ..., N∆ (2)

Once discretized in this way, the problem is one of sparse recovery: we seek to represent the
observed signal with a sparse linear combination of elements of a finite dictionary {fn,j(t) :=
fn(t − j∆), n ∈ 1, ..., Nf , j ∈ 1, ..., N∆}. Framing the problem as sparse recovery, one can
bring tools from compressed sensing to bear. However, the discretization introduces several new
difficulties. First, we can only approximate the translation τ by values on a discrete grid. Secondly,
choosing small ∆ allows us to more closely approximate τ , but demands more computation, and
such finely spaced dictionary elements yield a highly coherent dictionary, while sparse recovery
algorithms generally have guarantees for low-coherence dictionaries.

A previously introduced algorithm that uses techniques of sparse recovery and returns accurate and
continuous valued estimates of a and τ is Continuous Basis Pursuit (CBP) [4], which we describe
below. CBP proceeds (roughly speaking) by augmenting the discrete dictionary fn,j(t) with other
carefully chosen basis elements, and then solving a convex optimization problem inspired by basis
pursuit denoising. We extend ideas introduced in CBP to present a new method for recovering
the desired time shifts τ and amplitudes a that leverage the speed and tractability of solving the
discretized problem while still ultimately producing continuous valued estimates of τ , and partially
circumventing the problem of too much coherence.

Basis pursuit denoising and other convex optimization or `1-minimization based methods have been
effective in the realm of sparse recovery and compressed sensing. However, greedy methods have
also been used with great success. Our approach begins with the augmented bases used in CBP,
but adds basis vectors greedily, drawing on the well known Orthogonal Matching Pursuit algorithm
[11]. In the regimes considered, our greedy approach is faster and more accurate than CBP.

Broadly speaking, our approach has three parts. First, we augment the discretized basis in one of
several ways. We draw on [4] for two of these choices, but also present another choice of basis that
is in some sense optimal. Second, we greedily select candidate time bins of size ∆ in which we
suspect an event has occurred. Finally, we move from this rough, discrete-valued estimate of timing
τ to continuous-valued estimates of τ and a. We iterate the second and third steps, greedily adding
candidate time bins and updating our estimates of τ and a until a stopping criterion is reached.

The structure of the paper is as follows. In Section 2 we describe the method of Continuous Basis
Pursuit (CBP), which our method builds upon. In Section 3 we develop our method, which we call
Continuous Orthogonal Matching Pursuit (COMP). In Section 4 we present the performance of our
method on simulated and neural data.

2 Continuous basis pursuit

Continuous Basis Pursuit (CBP) [4, 3, 5] is a method for recovering the time shifts and amplitudes
of waveforms present in a signal of the form (1). A key element of CBP is augmenting or replacing
the set {fn,j(t)} with certain additional dictionary elements that are chosen to smoothly interpolate
the one dimensional manifold traced out by fn,j(t− τ) as τ varies in (−∆/2,∆/2).

The benefit of a dictionary that is expanded in this way is twofold. First, it increases the ability
of the dictionary to represent shifted copies of the waveform fn(t − τ) without introducing as
much correlation as would be introduced by simply using a finer discretization (decreasing ∆),
which is an advantage because dictionaries with smaller coherence are generally better suited for
sparse recovery techniques. Second, one can move from recovered coefficients in this augmented
dictionary to estimates an,j and continuous-valued estimates of τn,j .
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In general, there are three ingredients for CBP: basis elements, an interpolator with corresponding
mapping function Φ, and a convex constraint set, C. There are K basis elements {gn,j,k(t) =
gn,k(t−j∆)}k=K

k=1 , for each waveform and width-∆ time bin, which together can be used to linearly
interpolate fn,j(t − τ), |τ | < ∆/2. The function Φ maps from amplitude a and time shift τ to K-
tuples of coefficients Φ(a, τ) = (c

(1)
n,j , ..., c

(K)
n,j ), so afn,j(t− τ) ≈

∑K
k=1 c

(k)
n,jgn,j,k(t). The convex

constraint set C is for K-tuples of coefficients of {gn,j,k}k=K
k=1 and corresponds to the requirement

that a > 0 and |τ | < ∆/2. If the constraint region corresponding to these requirements is not convex
(e.g. in the polar basis discussed below), its convex relaxation is used.

As a concrete example, let us first consider (as discussed in [4]) the dictionary augmented with
shifted copies of each waveform’s derivative : {f ′n,j(t) := f ′n(t−j∆)}. Assuming fn is sufficiently
smooth, we have from the Taylor expansion that for small τ , afn,j(t−τ) ≈ afn,j(t)−aτf ′n,j(t). If
we recover a representation of y as c1fn,j(t)+c2f

′
n,j(t), then we can estimate the amplitude a of the

waveform present in y as c1, the time shift τ as−c2/c1. Hence, we estimate y ≈ c1fn,j(t+c2/c1) =
c1fn(t − j∆ + c2/c1). Note that the estimate of the time shift τ varies continuously with c1, c2.
In contrast, using shifted copies of the waveforms only as a basis would not allow for a time shift
estimate off of the grid {j∆}j=N∆

j=1 .

Once a suitable dictionary is chosen, one must still recover coefficients (i.e. c1, c2 above). Motivated
by the assumed sparsity of the signal (i.e. y is the sum of relatively few shifted copies of waveforms,
so the coefficients of most dictionary elements will be zero), CBP draws on the basis pursuit denois-
ing, which has been effective in the compressive sensing setting and elsewhere [10],[1]. Specifically,
CBP (with a Taylor basis) recovers coefficients using:

argminc

∥∥∥∥∥∥
Nf∑
n=1

(Fnc(1)
n + F′nc(2)

n )− y

∥∥∥∥∥∥
2

2

+ λ

Nf∑
n=1

∥∥∥c(1)
n

∥∥∥
1

s.t. c(1)
n,i ≥ 0 , |c(2)

n,i| ≤
∆

2
c
(1)
i,n ∀n, i (3)

Here we denote by F the matrix with columns {fn,j(t)} and F′ the matrix with columns {f ′n,j(t)}.
The `1 penalty encourages sparsity, pushing most of the estimated amplitudes to zero, with higher
λ encouraging greater sparsity. Then, for each (n, j) such that c(1)

n,j 6= 0, one estimates that there is

a waveform in the shape of fn with amplitude â = c
(1)
n,j and time shift j∆ − τ̂ = j∆ − c(2)

n,j/c
(1)
n,j

present in the signal. The inequality constraints in the optimization problem ensure first that we only
recover positive amplitudes â, and second that estimates τ̂ satisfy |τ̂ | < ∆/2. Requiring τ̂ to fall
in this range keeps the estimated τ in the time bin represented by fn,j and also in the regime where
they Taylor approximation to fn,j(t−τ) is accurate. Note that (3) is a convex optimization problem.

Better results in [4] are obtained for a second order Taylor interpolation and the best results come
from a polar interpolator, which represents each manifold of time-shifted waveforms fn,j(t −
τ), |τ | ≤ ∆/2 as an arc of the circle that is uniquely defined to pass through fn,j(t), fn,j(t−∆/2),
and fn,j(t+∆/2). Letting the radius of the arc be r, and its angle be 2θ one represents points on this
arc by linear combinations of functions w, u, v: f(t−τ) ≈ w(t)+r cos( 2τ

∆ θ)u(t)+r sin( 2τ
∆ θ)v(t).

The Taylor and polar bases consist of shifted copies of elements chosen in order to linearly interpo-
late the curve in function space defined by fn(t − τ) as τ varies from −∆/2 to ∆/2. Let Gn,k be
the matrix whose columns are gn,j,k(t) for j ∈ 1, ..., N∆. With choices of basis elements, interpo-
lator, and corresponding convex constraint set C in place, one proceeds to estimate coefficients in
the chosen basis by solving:

argminc

∥∥∥∥∥∥y −
Nf∑
n=1

K∑
k=1

Gn,kc
(k)
n

∥∥∥∥∥∥
2

2

+ λ‖
Nf∑
n=1

c(1)
n ‖1 subject to (c

(1)
n,j , ..., c

(K)
n,j ) ∈ C ∀(n, j) (4)

One then maps back from each nonzero K-tuple of recovered coefficients c(1)
n,j , ..., c

(K)
n,j to cor-

responding ân,j , τ̂n,j that represent the amplitude and timing of the nth waveform present in
the jth time bin. This can be done by inverting Φ, if possible, or estimating (ân,j , τ̂n,j) =

argmina,τ‖Φ(a, τ)− (c
(1)
n,j , ..., c

(K)
n,j )‖22.
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Table 1: Basis choices (see also [4], Table 1.)

Interpolator Basis Vectors Φ(a, τ) C

Taylor {fn,j(t)}, {f ′n,j(t)}, (a,−aτ, a τ
2

2 ) c(1), c(3) > 0, |c(2)| < c(1) ∆
2 ,

(K=3) {f ′′n,j(t)} |c(3)| < c(1) ∆2

8

Polar {wn,j}, {un,j}, (a, ar cos( 2τ
∆ θ), c(1) ≥ 0,

√
(c(2))2 + (c(3))2 ≤ rc(1)

{vn,j} ar sin( 2τ
∆ θ)) rc(1) cos(θ) ≤ c(2) ≤ rc(1)

SVD {u1
n,j}...{uKn,j}. (See Section 3.1) (See Section 3.1)

3 Continuous Orthogonal Matching Pursuit

We now present our method for recovery, which makes use of the idea of augmented bases presented
above, but differs from CBP in several important ways. First, we introduce a different choice of basis
that we find enables more accurate estimates. Second, we make use of a greedy method that iterates
between choosing basis vectors and estimating time shifts and amplitudes, rather than proceeding
via a single convex optimization problem as CBP does. Lastly, we introduce an alternative to the
step of mapping back from recovered coefficients via Φ that notably improves the accuracy of the
recovered time estimates.

Greedy methods such as Orthogonal Matching Pursuit (OMP) [11], Subspace Pursuit [2], and Com-
pressive Sampling Matching Pursuit (CoSaMP) [8] have proven to be fast and effective in the realm
of compressed sensing. Since the number of iterations of these greedy methods tend to go as the
sparsity (when the algorithms succeed), they tend to be extremely fast when for very sparse sig-
nals. Moreover, our the greedy method eliminates the need to choose a regularization constant λ,
a choice that can vastly alter the effectiveness of CBP. (We still need to choose K and ∆.) Our
method is most closely analogous to OMP, but recovers continuous time estimates, so we call it
Continuous Orthogonal Matching Pursuit (COMP). However, the steps below could be adapted in a
straightforward way to create analogs of other greedy methods.

3.1 Choice of finite basis

We build upon [4], choosing as our basis N∆ shifted copies of a set of K basis vectors for each
waveform in such away that these K basis vectors can effectively linearly interpolate fn(t − τ)
for |τ | < ∆/2. In our method, as in Continuous Basis Pursuit, these basis vectors allow us to
represent continuous time shifts instead of discrete time shifts, and expand the descriptive power of
our dictionary without introducing undue amounts of coherence. While previous work introduced
Taylor and polar bases, we obtain the best recovery from a different basis, which we describe now.

The basis comes from a singular value decomposition of a matrix whose columns correspond to
discrete points on the curve in function space traced out by fn,j(t− τ) as we vary τ for |τ | < ∆/2.
Within one time bin of size ∆, consider discretizing further intoNδ = ∆/δ time bins of size δ � ∆.
Let Fδ be the matrix with columns that are these (slightly) shifted copies of the waveform, so that
the ith column of Fδ is fn,j(t − iδ + ∆/2) for a discrete vector of time points t. Each column of
this matrix is a discrete point on the curve traced out by fn,j(t− τ) as τ varies.

In choosing a basis, we seek the best choice ofK vectors to use to linearly interpolate this curve. We
might instead seek to solve the related problem of finding the bestK vectors to represent these finely
spaced points on the curve, in which case a clear choice for theseK vectors is the firstK left singular
vectors of Fδ . This choice is optimal in the sense that the singular value decomposition yields the
best rank-K approximation to a matrix. If Fδ = UΣVT is the singular value decomposition, and
uk,vk are the columns of U and V respectively, then ‖Fδ −

∑K
k=1 ukΣk,k(vk)T ‖ ≤ ‖F−A‖ for

any rank-K matrix A and any unitarily invariant norm ‖ · ‖.
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In order to use this SVD basis with CBP or COMP, one must specify a convex constraint set for the
coefficients of this basis. Since afn,j(t− iδ) =

∑K
k=1 au

kΣk,kv
k
i a reasonable and simply enforced

constraint set would be to assume that the recovered coefficients c(k) corresponding to each basis
vector uk, when divided by c(1) to account for scaling, be between mini Σk,kv

k
i and maxi Σk,kv

k
i . A

simple way to recover a and τ would to choose τ = iδ and a, i to minimize
∑K
k=1(c(k)−aΣk,kv

k
i )2.

In figure 3.1, we compare the error between shifted copies of a sample waveform f(t − τ) for
|τ | < 0.5 and the best (least-squares) approximation of that waveform as a linear combination of
K = 3 vectors from the Taylor, polar, and SVD bases. The structure of the error as a function of the
time shift τ reflects the structure of these bases. The Taylor approximation is chosen to be exactly
accurate at τ = 0 while the polar basis is chosen to be precisely accurate at τ = 0,∆/2,−∆/2. The
SVD basis gives the lowest mean error across time shifts.
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SVD:   
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Figure 1: Using sample waveform f(t) ∝ t exp(−t2) (left panel), we compare the error introduced
by approximating f(t− τ) for varying τ with a linear combination of K = 3 basis vectors, from the
Taylor, polar or SVD bases. Basis vectors are shown in the middle three panels, and error in the far
right panel. The SVD basis introduces the least error on average over the shift τ . The average errors
for the Taylor, polar, and SVD bases are 0.026, 0.027, and 0.014 respectively.

3.2 Greedy recovery

Having chosen our basis, we then greedily recover the time bins in which an occurrence of each
waveform appears to be present. We would like to build up a set of pairs (n, j) corresponding to
an instance of the nth waveform in the jth time bin. (In our third step, we will refine the estimate
within the chosen bins.)

Our greedy method is motivated by Orthogonal Matching Pursuit (OMP), which is used to recover a
sparse solution x from measurements y = Ax. In OMP [11], one greedily adds a single dictionary
element to an estimated support set S at each iteration, and then projects orthogonally to adjust the
coefficients of all chosen dictionary elements. After initializing with S = ∅,x = 0, one iterates the
following until a stopping criterion is met:

r = y −Ax

j = argmaxj{|〈aj , r〉| s.t. j ∈ {1, ...J}\S}
S = S ∪ {j}
x = argminz{||y −Az||2 s.t. zi = 0 ∀ i /∈ S}

If we knew the sparsity of the signal, we could use that as our stopping condition. Normally we do
not know the sparsity a priori; we stop when changes in the residual become sufficiently small.

We adjust this method to choose at each step not a single additional element but rather a set of
K associated basis vectors. S is again initialized to be empty, but at each step we add a time-
bin/waveform pair (n, j), which is associated with K basis vectors. In this way, we are adding K
vectors at each step, instead of one as in OMP. We greedily add the next index (n, j) according to:

(n, j) = argminm,i

{
min
cm,i

{‖
k∑
i=1

c
(k)
m,ig

(k)
m,i − r‖22 s.t. cm,i ∈ C} , (m, i) ∈ Sc

}
(5)
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Here {g(k)
m,i} are the chosen basis vectors (Taylor, polar, or SVD), and C is the corresponding con-

straint set, as in Section 2.

In comparison with the greedy step in OMP, choosing j as in (5) is more costly, because we need
to perform a constrained optimization over a K dimensional space for each n, j. Fortunately, it is
not necessary to repeat the optimization for each of the Nf ·N∆ possible indices each time we add
an index. Assuming waves are localized in time, we need only update the results of the constrained
optimization locally. When we update the residual r by subtracting the newly identified waveform
n in the jth bin, the residual only changes in the bins at or near the jth bin, so we need only update
the quantity mincn,j′{‖

∑k
i=1 c

(k)
n,j′g

(k)
n,j′ − r‖22 s.t. cn,j′ ∈ C } for j′ neighboring j.

3.3 Estimating time shifts

Having greedily added a new waveform/timebin index pair (n, j), we next define our update step,
which will correspond to the orthogonal projection in OMP. We present two alternatives, one of
which most closely mirrors the corresponding step in OMP, the other of which works within the
Fourier domain to obtain more accurate recovery.

To most closely follow the steps of OMP, at each iteration after updating S we update coefficients c
according to:

argminc

∥∥∥∥∥∥
∑

(n,j)∈S

K∑
k=1

c
(k)
n,jg

(k)
n,j − y

∥∥∥∥∥∥
2

2

subject to cn,j ∈ C ∀ (n, j) ∈ S (6)

We alternate between the greedily updating S via (5), and updating c as in (6), at each iteration
finding the new residual r =

∑
(n,j)∈S

∑K
k=1 c

(k)
n,jg

(k)
n,j−y ) until the `2 stopping criterion is reached.

Then, one maps back from {cn,j}(n,j)∈S to {a(n,j), τ(n,j)}(n,j)∈S as described in Section 2.

Alternatively we may replace the orthogonal projection step with a more accurate recovery of spike
timings that involves working in the Fourier domain. We use the property of the Fourier transform
with respect to translation that: (f(t− τ))∧ = e2πiτ f̂ . This allows us to estimate a, τ directly via:

argmina,τ‖(
∑
n,j∈S

an,je
2πiωτn,j f̂n,j(ω))− ŷ(ω)‖2 subject to |τn,j | < ∆/2 ∀ (n, j) ∈ S (7)

This is a nonlinear and non-convex constrained optimization problem. However, it can be solved rea-
sonably quickly using, for example, trust region methods. The search space is dramatically reduced
because τ has only |S| entries, each constrained to be small in absolute value. By searching directly
for a, τ as in (7) we sacrifice convexity, but with the benefit of eliminating from this step error of
interpolation introduced as we map back from c to a, τ using Φ−1 or a least squares estimation.

It is easy and often helpful to add inequality constraints to a as well, for example requiring a to be
in some interval around 1, and we do impose this in our spike-sorting simulations and analysis in
Section 4. Such a requirement effectively imposes a uniform prior on a over the chosen interval. It
would be an interesting future project to explore imposing other priors on a.

4 Results

We test COMP and CBP for each choice of basis on simulated and neural data. Here, COMP denotes
the greedy method that includes direct estimation of a and τ during the update set as in (7). The
convex optimization for CBP is implemented using the cvx package for MATLAB [7], [6].

4.1 Simulated data

We simulate a signal y as the sum of time-shifted copies of two sample waveforms f1(t) ∝
t exp(−t2) and f2(t) ∝ e−t

4/16 − e−t
2

(Figure 2a). There are s1 = s2 = 5 shifted copies of
f1 and f2, respectively. The time shifts are independently generated for each of the two waveforms
using a Poisson process (truncated after 5 spikes), and independent Gaussian noise of variance σ2 is
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Figure 2: (a) Waveforms present in the signal. (b) A noiseless (top) and noisy (bottom) signal with
σ = .2. (c) Recovery using CBP. (d) Recovery using COMP (with a, τ updated as in (7)). (e) For
each recovery method over different values of the standard deviation of the noise σ, misses plus false
positives, divided by the total number of events present, s = s1 + s2. (f) Average distance between
the true and estimated spike for each hit.

added at each time point. Figures 2b,c show an example noise-free signal (σ = 0), and noisy signal
(σ = .2) on which each recovery method will be run.

We run CBP with the Taylor and polar bases, but also with our SVD basis, and COMP with all three
bases. Since COMP here imposes a lower bound on a, we also impose a thresholding step after
recovery with CBP, discarding any recovered waveforms with amplitude less than .3. We find the
thresholding generally improved the performance of the CBP algorithm by pruning false positives.
Throughout, we use K = 3, since the polar basis requires 3 basis vectors per bin.

We categorize hits, false positive and misses based on whether a time shift estimate is within a
threshold of ε = 1 of the true value. The “average hit error” of Figure 2h, 3b is the average distance
between the true and estimated event time for each estimate that is categorized as a hit. Results are
averaged over 20 trials.

We compare CBP and COMP over different parameter regimes, varying the noise (σ) and the bin
size (∆). Figures 2g and 3a show misses plus false positives for each method, normalized by the total
number of events present. Figures 2f and 3b show average distance between the true and estimated
spike for each estimate categorized as a hit. The best performance by both measures across nearly
all parameter regimes considered is achieved by COMP using the SVD basis. COMP is more robust
to noise (Figure 2g), and also to increases in bin width ∆. Since both algorithms are faster for
higher ∆, robustness with respect to ∆ is an advantage. We also note a significant increase in CBP’s
robustness to noise when we implement it with our SVD basis rather than with the Taylor or polar
basis (Figure 2e).

A significant advantage of COMP over CBP is its speed. In Figure 3c we compare the speed of
COMP (solid) and CBP (dashed) algorithms for each basis. COMP yields vast gains in speed. The
comparison is especially dramatic for small ∆, where results are most accurate across methods.

4.2 Neural data

We now present recovery of spike times and identities from neural data. Recordings were made
using glass-coated tungsten electrodes in the lateral intraparietal sulcus (LIP) of a macaque monkey
performing a motion discrimination task. In addition to demonstrating the applicability of COMP
to sorting spikes in neural data, this section also shows the resistance of COMP to a certain kind of
error that recovery via CBP can systematically commit, and which is relevant to neural data.
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Figure 3: (a) Misses plus false positives, divided by the total number of events present, s = s1 + s2

over different values of bin width ∆. (b) Average distance between the true and estimated spike for
each hit for each recovery method. (c) Run time for COMP (solid) and CBP (dashed) for each basis.
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Figure 4: (a) Two neural waveforms; each is close to as scaled copy of the other (b) Recovery of
spikes via COMP (magenta) and CBP (cyan) using the SVD basis. CBP tends to recover small-
amplitude instances of waveform one where COMP recovers large amplitude instances of waveform
two (c) Top: recovered traces. Lower panel: zooming in on an area of disagreement between COMP
and CBP. The large-ampltude copy of waveform two more closely matches the trace

In the data, the waveform of one neuron resembles a scaled copy of another (Figure 4a).The sim-
ilarity causes problems for CBP or any other `1 minimization based method that penalizes large
amplitudes. When the second waveform is present with an amplitude of one, CBP is likely to incor-
rectly add a low-amplitude copy of the first waveform (to reduce the amplitude penalty), instead of
correctly choosing the larger copy of the second waveform; the amplitude penalty for choosing the
correct waveform can outweigh the higher `2 error caused by including the incorrect waveform.

This misassignment is exactly what we observe (Figure 4b). We see that CBP tends to report small-
amplitude copies of waveform one where COMP reports large-amplitude copies of waveform two.
Although we lack ground truth, the closer match of the recovered signal to data (Figure 4c) indicates
that the waveform identities and amplitudes identified via COMP better explain the observed signal.

5 Discussion

We have presented a new greedy method called Continuous Orthogonal Matching Pursuit (COMP)
for identifying the timings and amplitudes for waveforms from a signal that has the form of a (noisy)
sum of shifted and scaled copies of several known waveforms. We draw upon the method of Contin-
uous Basis Pursuit, and extend it in several ways. We leverage the success of Orthogonal Matching
Pursuit in the realm of sparse recovery, use a different basis derived from a singular value decom-
position, and also introduce a move to the Fourier domain to fine-tune the recovered time shifts.
Our SVD basis can also be used with CBP and in our simulations it increased performance of CBP
as compared to previously used bases. In our simulations COMP obtains increased accuracy as
well as greatly increased speed over CBP across nearly all regimes tested. Our results suggest that
greedy methods of the type introduced here may be quite promising for, among other applications,
spike-sorting during the processing of neural data.
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